

MY-BASIC

Quick Reference

Copyright (C) 2011 – 2017 Wang Renxin

https://github.com/paladin-t/my_basic

https://github.com/paladin-t/my_basic

1. Introduction

MY-BASIC is a lightweight BASIC interpreter written in standard C,

with only dual files. Aimed to be embeddable, extendable and

portable. It is a dynamic typed programming language. It supports

structured grammar; implements a style of OOP called

prototype-based programming paradigm; and it offers a functional

programming ability with lambda abstraction. The kernel is written

with a C source file and an associated header file. It's easy to either

embed it or use it as a standalone interpreter. You can get how to use

it and how to add new scripting interfaces in five minutes. It's

possible to combine MY-BASIC with an existing project in C, C++, Java,

Objective-C, Swift, C# and many other languages. Script driven can

make your projects configurable, scalable and elegant. It's also

possible to learn how to build an interpreter from scratch with

MY-BASIC, or build your own dialect based on it.

This manual is a quick reference on how to program with MY-BASIC,

what it can do and what cannot, how to use it and extend it as a

scripting programming language.

For the latest revision or other information, see

https://github.com/paladin-t/my_basic; or contact with the author

via mailto:hellotony521@qq.com to get support.

https://github.com/paladin-t/my_basic
mailto:hellotony521@qq.com

2. Programming with BASIC

The well-known programming language BASIC is an acronym for

Beginner's All-purpose Symbolic Instruction Code; when we mention

BASIC today, we often refer to the BASIC family, not any specific one.

The BASIC family has a long history since an original BASIC was

designed in 1964 by John George Kemeny and Thomas Eugene Kurtz

at Dartmouth College in New Hampshire; and BASIC is famous

because it is easy to learn and use all the time. Thank you all BASIC

dedicators and fanatics, your passion affected many people like me,

and guided us to the computer science.

MY-BASIC has a structured BASIC syntax, and offers many other retro

and modern features. It would be familiar to you if you have ever

programmed with another BASIC dialect, or other programming

languages.

Getting started

You can download the latest MY-BASIC package from

https://github.com/paladin-t/my_basic/archive/master.zip or check

out the source code to make a build manually. You can get the latest

revision with git clone https://github.com/paladin-t/my_basic.git. It is

recommended to get a MY-BASIC executable and have a quick glance.

In this part let’s get start using the MY-BASIC interpreter, which

comes as follow:

https://github.com/paladin-t/my_basic/archive/master.zip

The close square bracket is an input prompt. Come alone with a

“Hello World” convention in MY-BASIC:

Like other BASIC dialects, MY-BASIC is case-insensitive; that is to say

PRINT A$ and Print a$ mean all the same. You would get the response

text after giving it a RUN command and hinting Enter. Any text begins

with a single quote until the end of that line is a comment (or remark)

which won’t influence the logic of a program; a comment does not

perform anything, it’s just a short explanation of code. It’s also able to

use the retro REM statement to start a comment as well.

MY-BASIC is configurable with macros, this manual is described with

default configuration.

Multi-line comment

‘ Hello world tutorial

input “What is your name: “, n$

def greeting(a, b)

 return a + “ “ + b + “ by “ + n$ + “.”

enddef

print greeting(“Hello”, “world”);

MY-BASIC also supports multi-line comment, which is an advantage

comparing to other dialects. It’s surrounded by “‘[“ and “‘]”, for

example:

MY-BASIC will ignores all comment lines between them. The

convenience is it’s possible to simply modify “’[” to “’’[” to

uncomment all lines.

Support for Unicode

Unicode is widely used nowadays for international text

representation; MY-BASIC supports both Unicode based identifier

and string manipulation. For example:

Keywords

print "你好" + "世界";

日本語 = "こんにちは"

print 日本語, ", ", len(日本語);

print “Begin”;

‘[

print “This line won’t be executed!”;

print “This is also ignored”;

‘]

print “End”;

There are some keywords and reserved function words in MY-BASIC

as follow:

Keywords REM, NIL, MOD, AND, OR, NOT, IS, LET,

DIM, IF, THEN, ELSEIF, ELSE, ENDIF, FOR,

IN, TO, STEP, NEXT, WHILE, WEND, DO,

UNTIL, EXIT, GOTO, GOSUB, RETURN,

CALL, DEF, ENDDEF, CLASS, ENDCLASS,

ME, NEW, VAR, REFLECT, LAMBDA, MEM,

TYPE, IMPORT, END

Reserved

words

Standard

library

ABS, SGN, SQR, FLOOR, CEIL, FIX, ROUND,

SRND, RND, SIN, COS, TAN, ASIN, ACOS,

ATAN, EXP, LOG, ASC, CHR, LEFT, LEN,

MID, RIGHT, STR, VAL, PRINT, INPUT

Collection

library

LIST, DICT, PUSH, POP, BACK, INSERT,

SORT, EXISTS, INDEX_OF, GET, SET,

REMOVE, CLEAR, CLONE, TO_ARRAY,

ITERATOR, MOVE_NEXT

It is not accepted to use these words for user-defined identifiers; in

addition there are two more predefined boolean constants, aka.

TRUE and FALSE, which obviously represent boolean value true and

false, it’s not accepted to reassign these two symbols with other

value. Details of keywords and functions will be mentioned latter in

this manual.

Operators

All operators in MY-BASIC as follow:

Operators +, -, *, /, ^, =, <, >, <=, >=, <>

All these operators can be used in calculation or comparison

expressions. Besides, the keywords MOD, AND, OR, NOT, IS are also

operators. An expression is evaluated from left to right, with top

down priorities as follow:

Level Operation

1 () (explicit priority indicator)

2 - (negative), NOT

3 ^

4 *, /, MOD

5 +, - (minus)

6 <, >, <=, >=, <>, = (equal comparison)

7 AND, OR, IS

8 = (assignment)

MOD stands for modulus, aka. “%” in some other programming

languages. The caret symbol stands for power operation.

Data types and operations

MY-BASIC is a dynamic programming language, therefore variables

don’t have types, but values do. The built-in types are: Nil, Integer,

Real, String, Type, Array, List, List Iterator, Dictionary, Dictionary

Iterator, Prototype (aka. “Class”), and Sub Routine (including Lambda).

Besides, MY-BASIC also supports user defined data types (Usertype

and Referenced Usertype) to let you to customize your own data

structures.

Nil is a special type which includes only one valid value NIL, aka. null,

none, nothing, etc. It unreferences the previous value of a variable by

assigning it with a nil.

A Type typed value represents the type of a value, it will be explained

with the TYPE statement.

Integer and real are defined as int and float of C types which are 32bit

size under common compilers. You could redefine them with other

types such as long, long long, double and long double by modifying a

few lines of code. Since there is no dedicated boolean type, it’s

defined as integer, and can be assigned from any expression. It results

false in a boolean condition with NIL, FALSE, and 0; it results true with

all other values including a blank string “”.

MY-BASIC accepts literal numbers in HEX and OCT. A hexadecimal

number begins with a 0x prefix, and an octadic begins with a 0. For

example 0x10 (HEX) equals to 020 (OCT) equals to 16 (DEC).

A variable identifier is formed with letters, numbers, underline and an

optional dollar postfix, but it must begin with a letter or an underline.

It’s not accepted to use type specifier for variable, and you don’t

need to declare it before accessing it neither. You don’t need to

manage conversion between integer and float values manually,

generally MY-BASIC stores numbers with proper type and precision

automatically. Notice that the dollar character $ is optional for string

variables, and reserved for the purpose of compatibility with early

BASIC dialects. An assignment statement consists of a beginning

keyword LET and a following assignment expression, the word LET is

optional. For example:

MY-BASIC supports array up to four dimensions by default, which is

defined by a macro. Array is a kind of regular collection data structure

in programming aspect. An array can store a set of data that each

element can be accessed by the array name and subscript. A

MY-BASIC array can hold either real or string data. An array must be

declared by a DIM (short for dimension) statement before using, for

example:

The naming rules for an array are the same as naming a variable,

actually all user identifiers in MY-BASIC obey the same rules.

Dimensions are separated by commas. Array indexes begin from zero

in MY-BASIC therefore nums(0) is the first element of array nums, it is

a little different from other BASIC, but more common in modern

programming languages. An array index could be a non-negative

integer value formed as a constant, a variable of integer or an

expression which results an integer; an invalid index may cause an out

of bound error.

dim nums(10)

dim strs$(2, 5)

let a = 1 ‘ Assignment statement begins with LET

pi = 3.14 ‘ Another assignment statement without LET

It is possible to concatenate two Strings together using the plus

operator “+”. Each string concatenating generates a new string object

with memory allocation. It is also possible to apply comparison

operators to Strings, which starts comparing the first character of

both string, if they are equal to each other, it continues checking the

following ones until a difference occurs or reaching the end of a string;

then return an integer value indicating the relationship.

Structured routine

It is possible to extract reusable code blocks with sub routines.

MY-BASIC supports both structured routine with the

CALL/DEF/ENDDEF statements and instructional routine with the

GOSUB/RETURN statements, but they can’t be mixed together in one

program.

A structured routine begins with a DEF statement and ends with

ENDDEF, you can define routines with any arity. It’s similar to call a

sub routine with calling a native scripting interface. It requires an

explicit CALL statement, if a routine is lexically defined after calling. A

routine returns the value of the last expression back to its caller, or

returns explicitly with the RETURN statement. For example:

Each routine has its own scope for variable lookup.

Besides, the CALL statement is used to get an invokable value as:

Be aware it requires a pair of brackets to get the value, or it’s a calling

execution.

routine = call(fun) ‘ Get an invokable value

routine() ‘ Invoke an invokable value

a = 1

b = 0

def fun(d)

 d = call bar(d)

sin(10)

 return d ' Try comment this line

enddef

def foo(b)

 a = 2

 return a + b

enddef

def bar(c)

 return foo(c)

enddef

r = fun(2 * 5)

print r; a; b; c;

Instructional routine

Traditional instructional routine is reserved as well. A label is used to

tag the start point of an instructional routine. You can use a GOSUB

statement wherever in the program to call a routine label. The

RETURN statement is used to exit a routine and transfer control back

to its caller.

Control structures

There are three kinds of execution flows in MY-BASIC.

Serial structure, which executes statements line by line, is the most

basic structure. MY-BASIC supports the GOTO statement which

provides unconditional control transfer ability. You can execute it like

GOSUB as GOTO label. An instructional routine can return back from a

callee, but unconditional GOTO cannot. The END statement can be

placed anywhere in source code to terminate the whole execution of

a program.

Conditional structures consist of some condition jump statements:

IF/THEN/ELSEIF/ELSE/ENDIF. These statements check condition

expressions then perform an action in a case of true condition branch,

otherwise in a case of false it performs something else as you write.

You can write conditional IF statements in a single line:

Or multiple lines:

if n mod 2 then print "Odd"; else print "Even";

It supports nested IF with multi-line conditional statements.

Loop structure statements check a loop condition and do the loop

body in a case of true until it comes to a false case.

Use the FOR/TO/STEP/NEXT statements to loop through certain steps.

For example:

The STEP part is optional if it increases with 1. The loop variable after

NEXT is also optional if it is associated with a corresponding FOR.

MY-BASIC also supports loop on collections with the FOR/IN/NEXT

statements. It’s possible to iterate list, dictionary, iterable class and

usertypes. The loop variable is assigned with the value of the element

for i = 1 to 10 step 1

 print i;

next i

input n

if n = 1 then

 print "One";

elseif n = 2 then

 print "Two";

elseif n = 3 then

 print "Three";

else

 print "More than that";

endif

which an iterator is currently pointing to. For example, this counts

from one to five:

The WHILE/WEND and DO/UNTIL loops are used to loop through

uncertain steps, or to wait for certain conditions. For example:

Just as their names imply, the WHILE/WEND statements do the loop

body while the condition is true, and the DO/UNTIL statements do it

until the condition is false. The WHILE/WEND statements check

condition before executing loop body, while the DO/UNTIL

statements check condition after loop body has been executed once.

a = 1

do

 print a;

 a = a + 1

until a > 10

a = 1

while a <= 10

 print a;

 a = a + 1

wend

for i in list(1 to 5)

 print i;

next

The EXIT statement interrupts current loop and continues to execute

the program after loop.

Using class

MY-BASIC supports prototype-based programming paradigm which is

a kind of OOP (Object-Oriented Programming). It is also as known as

“prototypal”, “prototype-oriented”, “classless”, or “instance-based”

programming. Use a pair of CLASS/ENDCLASS statements to define a

prototype object (a class). Use VAR to declare a member variable in a

class. It’s able to define member function (aka. “method”) in a

prototype with the DEF/ENDDEF statements as well. Write another

prototype surrounding with a pair of parentheses after a declaration

statement to inherit from it (which means using it as meta class). Use

the NEW statement to create a new clone of a prototype. For

example:

“bar” will simply link “foo” as meta class. But “inst” will create a new

clone of “bar” and keep the “foo” meta linkage.

MY-BASIC supports reflection with a prototype with the REFLECT

statement. It iterates all variable fields and sub routines in a class and

its meta class, and stores name/value pairs of variables and

name/type pairs of sub routines to a dictionary. For example:

class foo

 var a = 1

 def fun(b)

 return a + b

 enddef

endclass

class bar(foo) ‘ Use Foo as a meta class (inheriting)

 var a = 2

endclass

inst = new(bar) ‘ Create a new clone of Bar

print inst.fun(3);

class base

 var b = "Base"

 def fun()

 print b;

 enddef

endclass

class derived(base)

 var d = "Derived"

 def fun()

 print d;

 enddef

endclass

i = new(derived)

i.fun();

r = reflect(i)

f = iterator(r)

while move_next(f)

 k = get(f)

 v = r(k)

 print k, ": ", v;

wend

g = get(i, “fun”);

g()

Using Lambda

A lambda abstraction (aka. “anonymous function” or “function literal”)

is a function definition that is not bound to an identifier. Lambda

functions are often:

1. Arguments being passed to higher order functions, or

2. Used for constructing the result of a higher-order function

that needs to return a function.

A lambda becomes a closure after it captured some values in outer

scope.

MY-BASIC offers full support for lambda, including invokable as a

value, higher order function, closure and currying, etc.

Lambda abstraction begins with the LAMBDA keyword. For example:

' Higher order function

def foo()

 y = 1

 return lambda (x, z) (return x + y + z)

enddef

l = foo()

print l(2, 3);

' Simple invoke

f = lambda (x, y) (return x * x + y * y)

print f(3, 4);

https://en.wikipedia.org/wiki/Anonymous_function
https://en.wikipedia.org/wiki/Closure_(computer_programming)

' Closure

s = 0

def create_lambda()

 v = 0

 return lambda ()

 (

 v = v + 1

 s = s + 1

 print v;

 print s;

)

enddef

a = create_lambda()

b = create_lambda()

a()

b()

' As return value

def counter()

 c = 0

 return lambda (n)

 (

 c = c + n

 print c;

)

enddef

acc = counter()

acc(1)

acc(2)

' Currying

def divide(x, y)

 return x / y

enddef

def divisor(d)

 return lambda (x) (return divide(x, d))

enddef

half = divisor(2)

third = divisor(3)

print half(32); third(32);

Checking the type of a value

The TYPE statement tells what the type of a value is, or generates a

type information with a predefined type string. For example:

It’s also possible to check whether a value match a specific type with

the IS operator as follow:

The IS statement also tells whether an instance of a prototype is

inherited from another prototype:

Pass a type value to the STR statement to get the type name in string.

Importing another BASIC file

It’s necessary to separate different parts into multiple reusable files

with large programs. The IMPORT statement imports another source

file just as it was written at where imported. For example assuming

we got an “a.bas” as:

And another “b.bas” as:

foo = 1

print inst is foo; ‘ True if foo is inst’s prototype

print 123 is type(“INT”); “Hi” is type(“STRING”);

print inst is type(“CLASS”);

print type(123); type(“Hi”); ‘ Get the types of values

print type(“INT”); type(“REAL”); ‘ Get the specific types

You can use everything you’ve imported. MY-BASIC handles cycle

importing properly.

Importing a module

It’s possible to put some native scripting interfaces in a module (aka.

“namespace”) to avoid naming pollution. MY-BASIC doesn’t support

make modules in BASIC for the moment. Use IMPORT “@xxx” to

import a native module, all symbols in that module could be used

without module prefix.

3. Core and Standard Libraries

MY-BASIC offers a set of frequently used functions which provides

some fundamental numeric and string operations. These function

names cannot be used for user-defined identifiers as well. For details

of these functions, see the figure follow:

Type Name Description

Numeric ABS Returns the absolute value of a number

SGN Returns the sign of a number

SQR Returns the arithmetic square root of a

number

import a.bas

print foo;

FLOOR Returns the greatest integer not greater

than a number

CEIL Returns the least integer not less than a

number

FIX Returns the integer part of a number

ROUND Returns the nearest approximate integer

of a number

SRND Sets the seed of random number

RND Returns a random float number between

[0.0, 1.0] by RND, or [0, max] by

RND(max), or [MIN, MAX] by RND(min,

max)

SIN Returns the sine of a number

COS Returns the cosine of a number

TAN Returns the tangent of a number

ASIN Returns the arcsine of a number

ACOS Returns the arccosine of a number

ATAN Returns the arctangent of a number

EXP Returns the base-e exponential of a

number

LOG Returns the base-e logarithm of a number

String ASC Returns the integer ASCII code of a

character

CHR Returns the character of an integer ASCII

code

LEFT Returns a given number of characters

from the left of a string

MID Returns a given number of characters

from a given position of a string

RIGHT Returns a given number of characters

from the right of a string

STR Returns the string type value of a number,

or format a class instance with the

TO_STRING function

Common VAL Returns the number type value of a string,

or the value of a dictionary iterator,

overridable for referenced usertype and

class instance

LEN Returns the length of a string or an array,

or the element count of a LIST or a DICT,

overridable for referenced usertype and

class instance

Input &

Output

PRINT Outputs number or string to the standard

output stream, user redirectable

INPUT Inputs number or string from the standard

input stream, user redirectable

Note that all these functions besides PRINT and INPUT require a pair

of brackets to surround arguments; the RND statement is a little

special, it can come either with or without brackets, see the figure for

detail.

4. Collection Libraries

MY-BASIC supplies a set of LIST, DICT manipulation functions, which

provide creation, accessing, iteration, etc. as follow:

Name Description

LIST Creates a list

DICT Creates a dictionary

PUSH Pushes a value to the tail of a list, overridable for

referenced usertype and class instance

POP Pops a value from the tail of a list, overridable for

referenced usertype and class instance

BACK Peeks the value of a tail of a list, overridable for

referenced usertype and class instance

INSERT Inserts a value at a specific position of a list,

overridable for referenced usertype and class

instance

SORT Sorts a list increasingly, overridable for referenced

usertype and class instance

EXISTS Tells whether a list contains a specific value (not

index), or whether a dictionary contains a specific

key, overridable for referenced usertype and class

instance

INDEX_OF Gets the index of a value in a list, overridable for

referenced usertype and class instance

GET Returns the value of a specific index in a list, or

the value of a specific key in a dictionary, or a

member of a class instance, overridable for

referenced usertype and class instance

SET Sets the value of a specific index in a list, or the

value of a specific key in a dictionary, or a member

variable of a class instance, overridable for

referenced usertype and class instance

REMOVE Removes the element of a specific index in a list,

or the element of a specific key in a dictionary,

overridable for referenced usertype and class

instance

CLEAR Clears a list or a dictionary, overridable for

referenced usertype and class instance

CLONE Clones a collection, or a referenced usertype

TO_ARRAY Copies all elements from a list to an array

ITERATOR Gets an iterator of a list or a dictionary,

overridable for referenced usertype and class

instance

MOVE_NEXT Moves an iterator to next position for a list or a

dictionary, overridable for referenced usertype

and class instance

For example, showing how to use collections:

MY-BASIC supports accessing elements in a list or dictionary using

brackets directly:

A list begins from zero as well as how array does in MY-BASIC.

5. Application Programming Interface

MY-BASIC is written cleanly with standard C, in dual files. What you

have to do to embed MY-BASIC with existing projects is just copying

my_basic.h and my_basic.c to the target project, then add them to

d = dict()

d(1) = 2

print d(1);

l = list(1, 2, 3, 4)

set(l, 1, “B”)

print exists(l, 2); pop(l); back(l); len(l);

d = dict(1, “One”, 2, “Two”)

set(d, 3, “Three”)

print len(d);

it = iterator(d)

while move_next(it)

 print get(it);

wend

project build configuration. All interfaces are declared in my_basic.h.

Most API return int values representing for execution states, most of

them should return MB_FUNC_OK if there is no error, check the

MB_CODES macro in my_basic.h for details. Yet there are some

exceptions.

Interpreter structure

MY-BASIC uses an interpreter structure to store necessary data during

parsing and running period; like registered function, AST (Abstract

Syntax Tree), parsing context, running context, scope, error

information, etc. An interpreter structure is a unit of MY-BASIC

environment context.

Meta information

unsigned long mb_ver(void);

Returns the version number of current interpreter.

const char* mb_ver_string(void);

Returns the version text of current interpreter.

Initializing and disposing

int mb_init(void);

This function must and must only be called once before any other

operations with MY-BASIC to initialize the entire system.

int mb_dispose(void);

This function must and must only be called once after using MY-BASIC

to dispose the entire system.

int mb_open(struct mb_interpreter_t** s);

This function opens an interpreter instance to get ready for parsing

and running.

It usually comes as:

int mb_close(struct mb_interpreter_t** s);

This function closes an interpreter instance after using. mb_open and

mb_close must be matched in pair.

int mb_reset(struct mb_interpreter_t** s, bool_t clrf);

This function resets an interpreter instance to initialization as it was

just opened. It clears all variables; and also all registered global

functions if tclrf is true.

Forking

These functions are used to fork and join an interpreter.

int mb_fork(struct mb_interpreter_t** s,

struct mb_interpreter_t* r,

bool_t clfk);

This function forks a new interpreter, from r to s. All forked

environments share the same registered functions, parsed code, etc.

but uses its own running context. Pass true to clfk to let the source

instance collects and manages data in the forked one.

struct mb_interpreter_t* bas = 0;

mb_open(&bas);

int mb_join(struct mb_interpreter_t** s);

This function joins a forked interpreter. Use this to close a forked

interpreter.

int mb_get_forked_from(struct mb_interpreter_t* s,

struct mb_interpreter_t** src);

This function gets the source interpreter of a forked one.

Function registration/unregistration

These functions are called to register or unregister native scripting

functions.

int mb_register_func(struct mb_interpreter_t* s,

const char* n,

mb_func_t f);

This function registers a function pointer into an interpreter with a

specific name. The function to be registered must have signature as

int (* mb_func_t)(struct mb_interpreter_t*, void**). A registered

function can be called in MY-BASIC script. This function returns how

many entries have been influenced, thus non-zero means success.

int mb_remove_func(struct mb_interpreter_t* s,

const char* n);

This function removes a registered function out of an interpreter with

a specific name when it was registered. This function returns how

many entries have been influenced, thus non-zero means success.

int mb_remove_reserved_func(struct mb_interpreter_t* s,

const char* n);

This function removes a reserved function out of an interpreter with

a specific name. Do not use this function unless you really need to,

for example, remove or replace built-in interfaces. This function

returns how many entries have been influenced, thus non-zero

means success.

int mb_begin_module(struct mb_interpreter_t* s, const char* n);

This function begins a module with a name. All functions registered

after a module began will be put in that module. Module is as known

as namespace; use the IMPORT statement to get shortcuts.

int mb_end_module(struct mb_interpreter_t* s);

This function ends the current module.

Interacting

These functions are used in extended functions to communicate with

the kernel.

int mb_attempt_func_begin(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal beginning format. Call it when beginning an extended

function without parameters.

int mb_attempt_func_end(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal ending format. Call it when ending an extended function

without parameters.

int mb_attempt_open_bracket(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal format that begins with an open bracket.

int mb_attempt_close_bracket(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal format that ends with a close bracket after argument list.

int mb_has_arg(struct mb_interpreter_t* s,

void** l);

This function detects whether there is any more argument at current

execution position. Use this function to implement a variadic function.

It returns zero for there’s no more argument, non-zero for more.

int mb_pop_int(struct mb_interpreter_t* s,

void** l,

int_t* val);

This function tries to pop an argument in int_t from an interpreter.

Then stores the result to *val.

int mb_pop_real(struct mb_interpreter_t* s,

void** l,

real_t* val);

This function tries to pop an argument in real_t from an interpreter.

Then stores the result to *val.

int mb_pop_string(struct mb_interpreter_t* s,

void** l,

char** val);

This function tries to pop an argument in char* (string) from an

interpreter. And stores the pointer to *val. You don’t need to know

how and when a popped string will be disposed, but note that a

popped string may be disposed when popping next string argument,

so, just process it or cache it in time.

int mb_pop_usertype(struct mb_interpreter_t* s,

void** l,

void** val);

This function tries to pop an argument in void* (usertype) from an

interpreter. Use mb_pop_value if a usertype is larger than void* in

bytes.

int mb_pop_value(struct mb_interpreter_t* s,

void** l,

mb_value_t* val);

This function tries to pop an argument in mb_value_t from an

interpreter. Use this function instead of mb_pop_int, mb_pop_real

and mb_pop_string if an extended function accepts arguments of

different types. Or popping other advanced data types.

int mb_push_int(struct mb_interpreter_t* s,

void** l,

int_t val);

This function pushes a value in int_t to an interpreter.

int mb_push_real(struct mb_interpreter_t* s,

void** l,

real_t val);

This function pushes a value in real_t to an interpreter.

int mb_push_string(struct mb_interpreter_t* s,

void** l,

char* val);

This function pushes a value in char* (string) to an interpreter. The

memory of char* val must be allocated and disposable by MY-BASIC,

use mb_memdup to make it before pushing. For example:

mb_push_string(s, l, mb_memdup(str, (unsigned)(strlen(str) + 1));.

int mb_push_usertype(struct mb_interpreter_t* s,

void** l,

void* val);

This function pushes a value in void* (usertype) to an interpreter. Use

mb_push_value if a usertype is larger than void* in bytes.

int mb_push_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function pushes a value in mb_value_t to an interpreter. Use this

function instead of mb_push_int, mb_push_real and mb_push_string

if an extended function returns generics types. Or pushing other

advanced data types.

Class definition

These functions are used to define a class manually at native side.

int mb_begin_class(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t** meta,

int c,

mb_value_t* out);

This function begins a class definition with a specific name. n is the

class name. meta is an array of mb_value_t*, which are meta classes;

c is the element count of the meta array. The generated class will be

returned into *out.

int mb_end_class(struct mb_interpreter_t* s,

void** l);

This function ends a class definition.

int mb_get_class_userdata(struct mb_interpreter_t* s,

void** l,

void** d);

This function gets the userdata of a class instance. The returned data

will be stored into *d.

int mb_set_class_userdata(struct mb_interpreter_t* s,

void** l,

void* d);

This function sets the userdata of a class instance with data d.

Value manipulation

These functions manipulate values.

int mb_get_value_by_name(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t* val);

This function gets the value of an identifier with a specific name. n is

the expected name text. It returns a value to *val.

int mb_add_var(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t val,

bool_t force);

This function adds a variable with a specific identifier name and a

value to an interpreter. n is the name text. val is the value of the

variable. force indicates whether overwrite existing variable.

int mb_get_var(struct mb_interpreter_t* s,

void** l,

void** v);

This function gets a token literally, and stores it in the parameter *v if

it’s a variable.

int mb_get_var_name(struct mb_interpreter_t* s,

void** v,

char** n);

This function gets the name of a variable, then stores it in the

parameter *n.

int mb_get_var_value(struct mb_interpreter_t* s,

void** l,

mb_value_t* val);

This function gets the value of a variable into *val.

int mb_set_var_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function sets the value of a variable from val.

int mb_init_array(struct mb_interpreter_t* s,

void** l,

mb_data_e t,

int* d,

int c,

void** a);

This function initializes an array which can be used in BASIC. The

parameter mb_data_e t stands for the type of elements in the array,

it accepts MB_DT_REAL or MB_DT_STRING; you need to disable the

MB_SIMPLE_ARRAY macro to use a complex array with passing

MB_DT_NIL. The int* d and int c stand for ranks of dimensions and

dimension count. The function will put a created array to void** a.

int mb_get_array_len(struct mb_interpreter_t* s,

void** l,

void* a,

int r,

int* i);

This function gets the length of an array. int r means which dimension

you’d like to get.

int mb_get_array_elem(struct mb_interpreter_t* s,

void** l,

void* a,

int* d,

int c,

mb_value_t* val);

This function gets the value of an element in an array.

int mb_set_array_elem(struct mb_interpreter_t* s,

void** l,

void* a,

int* d,

int c,

mb_value_t val);

This function sets the value of an element in an array.

int mb_init_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t* coll);

This function initializes a collection; you need to pass a valid

mb_value_t pointer with a specific collection type you’d like to

initialize.

int mb_get_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t idx,

mb_value_t* val);

This function gets an element in a collection. It accepts LIST index or

DICT key with mb_value_t idx.

int mb_set_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t idx,

mb_value_t val);

This function sets an element in a collection. It accepts LIST index or

DICT key with mb_value_t idx.

int mb_remove_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t idx);

This function removes an element from a collection. It accepts LIST

index or DICT key with mb_value_t idx.

int mb_count_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

int* c);

This function returns the count of elements in a collection.

int mb_keys_of_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t* keys,

int c);

This function retrieves all keys of a collection. It gets indices of a LIST

or keys of a DICT; and stores them in mb_value_t* keys.

int mb_make_ref_value(struct mb_interpreter_t* s,

void* val,

mb_value_t* out,

mb_dtor_func_t un,

mb_clone_func_t cl,

mb_hash_func_t hs,

mb_cmp_func_t cp,

mb_fmt_func_t ft);

This function makes a referenced usertype mb_value_t object which

holds void* val as raw userdata. Note you need to provide some

functors for the kernel.

int mb_get_ref_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

void** out);

This function gets the raw userdata from a referenced usertype.

int mb_ref_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function increases the reference count of a referenced value.

int mb_unref_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function decreases the reference count of a referenced value.

int mb_set_alive_checker(struct mb_interpreter_t* s,

mb_alive_checker_t f);

This function sets an alive object checker globally.

int mb_set_alive_checker_of_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

mb_alive_value_checker_t f);

This function sets an alive object checker on specific a referenced

usertype value.

int mb_override_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

mb_meta_func_e m,

void* f);

This function overrides a meta function of a specific referenced

usertype value.

int mb_dispose_value(struct mb_interpreter_t* s,

mb_value_t val);

This function disposes a value popped from an interpreter. Now used

for strings only.

Invokable manipulation

int mb_get_routine(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t* val);

This function gets a routine value with its name.

int mb_set_routine(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_routine_func_t f,

bool_t force);

This function sets a routine value with a specific name using a native

functor.

int mb_eval_routine(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

mb_value_t* args,

unsigned argc,

mb_value_t* ret);

This function evaluates an invokable value. mb_value_t* args is a

pointer of an argument array, unsigned argc is the count of those

arguments. The last parameter mb_value_t* ret is optional; pass

NULL to it if it’s not used.

int mb_get_routine_type(struct mb_interpreter_t* s,

mb_value_t val,

mb_routine_type_e* y);

This function gets the sub type of an invokable value. mb_value_t val

is a value of an invokable value, and the result will be assigned to

mb_routine_type_e* y.

Parsing and running

int mb_load_string(struct mb_interpreter_t* s,

const char* l

boo_t reset);

This function loads a string into an interpreter; then parses BASIC

source code to executable structures and appends them to the AST.

int mb_load_file(struct mb_interpreter_t* s,

const char* f);

This function loads a string into an interpreter; then parses BASIC

source code to executable structures and appends them to the AST.

int mb_run(struct mb_interpreter_t* s, bool_t clear_parser);

This function runs a parsed AST in an interpreter.

int mb_suspend(struct mb_interpreter_t* s,

void** l);

This function suspends and saves current execution point. Call

mb_run again to resume from a suspended point. This is a reserved

function for compatibility reasons to provide limited suspending (with

simple program).

int mb_schedule_suspend(struct mb_interpreter_t* s,

int t);

This function schedules a suspend event, and it will trigger the event

after finishing active statements. It’s useful to do so when you need

to do something else during the whole execution.

A). mb_schedule_suspend(s, MB_FUNC_SUSPEND); It's re-enterable

which means next mb_run will resume execution from where you

suspended. B). mb_schedule_suspend(s, MB_FUNC_END); Terminate

an execution normally, no error message. C). mb_schedule_suspend(s,

MB_EXTENDED_ABORT); Or pass an argument greater than

MB_EXTENDED_ABORT to terminate an execution and trigger an

error message. You can call mb_schedule_suspend either in

_on_stepped or in a scripting interface function. The difference

between mb_schedule_suspend and mb_suspend is that mb_suspend

can be called in a scripting interface only, and it cannot trap type B)

and C) suspension. This is a reserved function for compatibility

reasons to provide limited suspending (with simple program).

Debugging

int mb_debug_get(struct mb_interpreter_t* s,

const char* n,

mb_value_t* val);

This function retrieves the value of a variable with a specific name.

int mb_debug_set(struct mb_interpreter_t* s,

const char* n,

mb_value_t val);

This function sets the value of a variable with a specific name.

int mb_debug_get_stack_trace(struct mb_interpreter_t* s,

void** l,

char** fs,

unsigned fc);

This function traces current call stack. It requires the

MB_ENABLE_STACK_TRACE macro enabled to use this function.

int mb_debug_set_stepped_handler(struct mb_interpreter_t* s,

mb_debug_stepped h);

This function sets a step handler of an interpreter. The function to be

set must be a pointer of int (* mb_debug_stepped_handler_t)(struct

mb_interpreter_t*, void**, const char*, int, unsigned short, unsigned

short). This function is useful for step by step debugging, or handling

extra stuff during excution.

Type handling

const char* mb_get_type_string(mb_data_e t);

This function returns specific type name in string.

Error handling

int mb_raise_error(struct mb_interpreter_t* s,

void** l,

mb_error_e err,

int ret);

This function raises an error manually.

mb_error_e mb_get_last_error(struct mb_interpreter_t* s,

const char** file,

int* pos,

unsigned short* row,

unsigned short* col);

This function returns the latest error information of an interpreter

structure, and detail location. It clears the latest error information

after return.

const char* mb_get_error_desc(mb_error_e err);

This function returns specific error message in string.

int mb_set_error_handler(struct mb_interpreter_t* s,

mb_error_handler_t h);

This function sets an error handler of an interpreter.

IO redirection

int mb_set_printer(struct mb_interpreter_t* s,

mb_print_func_t p);

This function sets a PRINT handler of an interpreter. Use this to

customize an output handler for the PRINT statement. The function

to be set must be a pointer of int (* mb_print_func_t)(const char*, …).

It defaults to printf.

int mb_set_inputer(struct mb_interpreter_t* s,

mb_input_func_t p);

This function sets the INPUT handler of an interpreter. Use this to

customize an input handler for the INPUT statement. The function to

be set must be a pointer of int (* mb_input_func_t)(const char*,

char*, int). It defaults to mb_gets. The first parameter is an optional

prompt text if you write INPUT “Some text”, A$. Just ignore it if you

don’t use it.

Miscellaneous

bool_t mb_get_gc_enabled(struct mb_interpreter_t* s);

This function gets whether garbage collection is enabled.

int mb_set_gc_enabled(struct mb_interpreter_t* s,

bool_t gc);

This function sets whether garbage collection is enabled. Can be used

to pause and resume GC.

int mb_gc(struct mb_interpreter_t* s,

int_t* collected);

This function tries to trigger a garbage collection. And gets how much

memory has been collected.

int mb_get_userdata(struct mb_interpreter_t* s,

void** d);

This function gets the userdata of an interpreter instance.

int mb_set_userdata(struct mb_interpreter_t* s,

void* d);

This function sets the userdata of an interpreter instance.

int mb_set_import_handler(struct mb_interpreter_t* s,

mb_import_handler_t h);

This function sets a customized importing handler for BASIC code.

int mb_gets(const char* pmt,

char* buf,

int s);

A more safety evolvement of the standard C gets. Returns the length

of input text.

char* mb_memdup(const char* val,

unsigned size);

This function duplicates a block of memory to a MY-BASIC

manageable buffer; use this function before pushing a string

argument. Note this function only allocates and copies bytes with a

specific size, thus you have to add an extra byte to size for ending “\0”.

For example:

mb_push_string(s, l, mb_memdup(str, (unsigned)(strlen(str) + 1));.

int mb_set_memory_manager(mb_memory_allocate_func_t a,

mb_memory_free_func_t f);

This function sets a memory allocator and a freer globally to

MY-BASIC.

6. Scripting with MY-BASIC

The C programming language is most outstanding at source code

portability, because C compilers are available on almost every

platform. MY-BASIC is written in standard C, so it can be compiled for

different platforms, with none or few porting modifications. It is also

not painful at all to embed MY-BASIC in existing projects by just

adding the core, with dual files, into the target project.

It should be realized that, which parts in your project are execution

speed sensitive, and which parts are flexibility and configurability

sensitive. Scripting is appropriate for the volatile parts. MY-BASIC

benefits your projects with making it user customizable, extendable

and flexible.

7. Customizing MY-BASIC

Redirecting PRINT and INPUT

Include a header file to use variadic:

Customize a print handler for example:

#include <stdarg.h>

Customize an input handler for example:

int my_print(const char* fmt, ...) {

 char buf[128];

 char* ptr = buf;

 size_t len = sizeof(buf);

 int result = 0;

 va_list argptr;

 va_start(argptr, fmt);

 result = vsnprintf(ptr, len, fmt, argptr);

 if(result < 0) {

 fprintf(stderr, "Encoding error.\n");

 } else if(result > (int)len) {

 len = result + 1;

 ptr = (char*)malloc(result + 1);

 result = vsnprintf(ptr, len, fmt, argptr);

 }

 va_end(argptr);

 if(result >= 0)

 printf(ptr); /* Change me */

 if(ptr != buf)

 free(ptr);

 return ret;

}

Register these handlers to an interpreter:

Now your customized printer and inputer will be invoked instead of

the standard ones. Use PRINT and INPUT in BASIC to access to them.

See follow for making new functions as BASIC library.

Writing scripting API

You may need more scripting libraries according to your specific

requirement, though MY-BASIC already offers some functions.

The first step is defining the function in your native language (often C).

mb_set_printer(bas, my_print);

mb_set_inputer(bas, my_input);

int my_input(const char* pmt, char* buf, int s) {

int result = 0;

if(fgets(buf, s, stdin) == 0) { /* Change me */

fprintf(stderr, "Error reading.\n");

exit(1);

}

result = (int)strlen(buf);

if(buf[result - 1] == '\n')

buf[result - 1] = '\0';

return result;

}

All native callee s which will be invoked from BASIC are pointers of

type int (* mb_func_t)(struct mb_interpreter_t*, void**). An

interpreter instance is used as the first argument of an extended

function, the function can pop variadic from the interpreter structure

and push none or one return value back into the structure. The int

return value indicates an execution status of an extended function,

which should always return MB_FUNC_OK for no error nor

unexpected things. Let’s make a maximum function that returns the

maximum value of two integers as a tutorial; see the follow code:

The second step is to register this functions as: mb_reg_fun(bas,

maximum); (assuming we already have struct mb_interpreter_t* bas

initialized).

After that you can use a registered function as any other BASIC

functions in MY-BASIC as:

int maximum(struct mb_interpreter_t* s, void** l) {

 int result = MB_FUNC_OK;

 int m = 0;

 int n = 0;

 int r = 0;

 mb_assert(s && l);

 mb_check(mb_attempt_open_bracket(s, l));

 mb_check(mb_pop_int(s, l, &m));

 mb_check(mb_pop_int(s, l, &n));

 mb_check(mb_attempt_close_bracket(s, l));

 r = m > n ? m : n;

 mb_check(mb_push_int(s, l, r));

 return result;

}

Just return an integer value greater than or equals to the macro

MB_EXTENDED_ABORT to perform a user defined abort. It is

recommended to add an abort value like:

Then use return MB_ABORT_FOO; in your extended function when

something unexpected happened.

Using usertype values

Consider using usertypes, if built-in types in MY-BASIC cannot fit all

your requirements. It can accept whatever data you give it. MY-BASIC

doesn’t know what a usertype really is; it just holds a usertype value,

and communicates with BASIC.

There are only two essential interfaces to get or set a usertype:

mb_pop_usertype and mb_push_usertype. You can push a void* to an

interpreter and pop a value as void* as well.

For more information about using referenced usertype, see the

interfaces above, or check the website.

typedef enum mb_user_abort_e {

 MB_ABORT_FOO = MB_EXTENDED_ABORT + 1,

 /* More abort enums… */

};

i = maximum(1, 2)

print i;

Macros

Some features of MY-BASIC could be configured with macros.

MB_SIMPLE_ARRAY

Enabled by default. An entire array uses a unified type mark, which

means there are only two kinds of array: string and real_t.

Disable this macro if you would like to store generic type values in an

array including int_t, real_t, usertype, etc. Besides, array of string is

still another type. Note non simple array requires extra memory to

store type mark of each element.

MB_ENABLE_ARRAY_REF

Enabled by default. Compiles with referenced array if this macro

defined, otherwise compiles as value type array.

MB_MAX_DIMENSION_COUNT

Defined as 4 by default. Change this to support arrays of bigger

maximum dimensions. Note it cannot be greater than the maximum

number which an unsigned char precision can hold.

MB_ENABLE_COLLECTION_LIB

Enabled by default. Compiles including LIST and DICT libraries if this

macro is defined.

MB_ENABLE_USERTYPE_REF

Enabled by default. Compiles with referenced usertype support if this

macro defined.

MB_ENABLE_ALIVE_CHECKING_ON_USERTYPE_REF

Enabled by default. Compiles with alive object checking functionality

on referenced usertype if this macro defined.

MB_ENABLE_CLASS

Enabled by default. Compiles with class (prototype) support if this

macro defined.

MB_ENABLE_LAMBDA

Enabled by default. Compiles with lambda (anonymous function)

support if this macro defined.

MB_ENABLE_MODULE

Enabled by default. Compiles with module (namespace) support if

this macro defined. Use IMPORT “@xxx” to import a module, and all

symbols in that module could be used without the module prefix.

MB_ENABLE_UNICODE

Enabled by default. Compiles with UTF8 manipulation ability if this

macro defined, to handle UTF8 string properly with functions such as

LEN, LEFT, RIGHT, MID, etc.

MB_ENABLE_UNICODE_ID

Enabled by default. Compiles with UTF8 token support if this macro

defined, this feature requires MB_ENABLE_UNICODE enabled.

MB_ENABLE_FORK

Enabled by default. Compiles with fork support if this macro defined.

MB_GC_GARBAGE_THRESHOLD

Defined as 16 by default. It will trigger a sweep-collect GC cycle when

such number of deallocation occurred.

MB_ENABLE_ALLOC_STAT

Enabled by default. Use MEM to tell how much memory in bytes is

allocated by MY-BASIC. Note statistics of each allocation takes

sizeof(intptr_t) more bytes memory.

MB_ENABLE_SOURCE_TRACE

Enabled by default. MY-BASIC can tell where it goes in source code

when an error occurs.

Disable this to reduce some memory occupation. Only do this on

memory sensitive platforms.

MB_ENABLE_STACK_TRACE

Enabled by default. MY-BASIC will record stack frames including sub

routines and native functions if this macro defined.

MB_ENABLE_FULL_ERROR

Enabled by default. Prompts detailed error message. Otherwise all

error types will prompts a uniformed “Error occurred” message.

However, it’s always able to get specific error type by checking error

code in the callback.

MB_CONVERT_TO_INT_LEVEL

Describes how to deal with real numbers after an expression is

evaluated. Just leave it a real if it’s defined as

MB_CONVERT_TO_INT_LEVEL_NONE; otherwise try to convert it to

an integer if it doesn’t contains decimal part if it’s defined as

MB_CONVERT_TO_INT_LEVEL_ALL. Also you could use the

mb_convert_to_int_if_posible macro to deal with an mb_value_t in

your own scripting interface functions.

MB_PREFER_SPEED

Enabled by default. Prefers running speed over space occupation as

possible. Disable this to reduce memory footprint.

MB_COMPACT_MODE

Enabled by default. C struct may use a compact layout.

This might cause some strange pointer accessing bugs with some

compilers (for instance, some embedded system compilers). Try

disabling this if you met any strange bugs.

_WARNING_AS_ERROR

Defined as 0 by default.

Define this macro as 1 in my_basic.c to treat warnings as error, or

they will be ignored silently.

Something like divide by zero, wrong typed arguments passed will

trigger warnings.

_HT_ARRAY_SIZE_DEFAULT

Defined as 193 by default. Change this in my_basic.c to resize the

hash tables. Smaller value will reduce some memory occupation, size

of hash table will influence tokenization and parsing time during

loading, won’t influence running performance most of the time

(except cross scope identifier lookup).

_SINGLE_SYMBOL_MAX_LENGTH

Defined as 128 by default. Max length of a lexical symbol.

8. Memory Occupation

Memory footprint is often a sensitive bottleneck, under some

memory constrained platforms. MY-BASIC provides a method to

count how much memory an interpreter has allocated. Write script

like follow to tell it in bytes:

Note that it will take sizeof(intptr_t) bytes more of each allocation if

this statistics is enabled, but the extra bytes don’t count.

Comment the MB_ENABLE_SOURCE_TRACE macro in my_basic.h to

disable source trace to reduce some memory occupation, but you will

reserve error prompting only without source code locating.

Redefine the _HT_ARRAY_SIZE_DEFAULT macro with a smaller value

minimum to 1 in my_basic.c to reduce memory occupied by hash

tables in MY-BASIC. Value 1 means a linear lookup, mostly for parsing

mechanisms and dynamic lookup with complex identifiers.

The memory is limited in embedded systems which can run for years

and cause a severe waste of memory due to fragmentation. Besides,

it's efficient for MY-BASIC to customizing a memory allocator, even on

systems with a plenty of memory.

An allocator need to be in form of:

typedef char* (* mb_memory_allocate_func_t)(unsigned s);

And a freer:

typedef void (* mb_memory_free_func_t)(char* p);

Then you can tell MY-BASIC to use them globally instead of standard

malloc and free by calling:

MBAPI int mb_set_memory_manager(mb_memory_allocate_func_t a,

mb_memory_free_func_t f);

print mem;

Note these functors only affect things going inside my_basic.c, but

main.c still uses the standard C library.

There is already a simple memory pool implementation in main.c. You

need to make sure the _USE_MEM_POOL macro is defined as 1 to

enable this pool.

There are four functions in this implementation as a tutorial:

_open_mem_pool opens the pool when setting up an interpreter;

_close_mem_pool closes the pool when terminating; a pair of

_pop_mem and _push_mem are registered to MY-BASIC. Note

_pop_mem calls the standard malloc if an expected size is not a

common size in MY-BASIC; and it will take sizeof(union _pool_tag_t)

extra bytes to store meta data with each allocation. A typical

workflow may looks as follow:

_open_mem_pool(); // Open it

mb_set_memory_manager(_pop_mem, _push_mem); // Register

them

{

mb_init();

mb_open(&bas);

// Other deals with MY-BASIC

mb_close(&bas);

mb_dispose();

}

_close_mem_pool(); // Finish

Strictly speaking, the pool doesn't guarantee to allocate memory at

continuous spaces, it is an object pool other than a memory pool,

which pops a free chunk of memory with an expected size to user,

and pushes it to the stack back when user frees it instead of freeing it

to system. Replace it with other efficient algorithms to get best

performance and balance between space and speed.

9. Using MY-BASIC as a Standalone Interpreter

Execute the binary directly without any argument to launch in the

interactive mode. There are some commands for this mode:

Command Summary Usage

HELP Views help information.

CLS Clears screen.

NEW Clears current program.

RUN Runs current program.

BYE Quits interpreter.

LIST Lists current program. LIST [l [n]], l is start line

number, n is line count.

EDIT Edits

(modify/insert/remove)

a line in current

program.

EDIT n, n is line number.

EDIT -i n, insert a line

before a given line, n is

line number.

EDIT -r n, remove a line, n

is line number.

LOAD Loads a file as current

program.

LOAD *.*.

SAVE Saves current program to

a file.

SAVE *.*.

KILL Deletes a file. KILL *.*.

DIR List all files in a directory. DIR p, p is a directory path.

Type a command (maybe with several necessary arguments) then

hint enter to execute it. Commands are only operations of the

interpreter other than keyword, which means it’s accepted to use

them as identifiers in a BASIC program, for example LIST is a reserved

word, and a command too. But it’s better to avoid using commands

as identifiers to prevent reading confusion.

Pass a file path to the binary to load and run that BASIC file instantly.

Pass an option –e and an expression to evaluate and print it instantly,

for example –e “2 * (3 + 4)”, note the double quotation marks are

required when an expression contains spacing characters.

Pass an option –p and a number to set the threshold size of memory

pool, for example –p 33554432 to set the threshold to 32MB.

MY-BASIC will tidy the memory pool when the free list reached this

size.

