
MY-BASIC Quick Reference

1. Introduction

MY-BASIC is a lightweight cross-platform easy extendable BASIC

interpreter written in pure C with about 7000 lines of source code. Its

grammar is similar to structured BASIC. It is aimed to be either an

embeddable scripting language or a standalone interpreter. The core

is pretty light; all in a C source file and an associated header file. You

can combine MY-BASIC with an existing project in C, C++, Objective-C,

etc. Scripting driven can make your projects more powerful, elegant

and neat.

This manual is a quick reference on how to program with MY-BASIC,

what it can do and what cannot, how to use it and extend it as a

scripting programming language.

For the latest revision or information, see

https://github.com/paladin-t/my_basic; or contact with the author

through mailto:hellotony521@qq.com to get support.

2. Programming with BASIC

The well-known programming language BASIC is an acronym for

Beginner's All-purpose Symbolic Instruction Code; when we mention

BASIC today, we often refer to the BASIC family, not a specific one.

https://github.com/paladin-t/my_basic
mailto:hellotony521@qq.com

The BASIC family has a long history since an original BASIC was

designed in 1964 by John George Kemeny and Thomas Eugene Kurtz

at Dartmouth College in New Hampshire; and BASIC is famous

because it is easy to learn and use all the time. Thank you all BASIC

dedicators and fanatics.

MY-BASIC has an early structured BASIC like grammar. It would be

familiar to you if you ever had programmed with a BASIC dialect.

Getting started

You can download the latest MY-BASIC package from

https://github.com/paladin-t/my_basic/archive/master.zip or check

out the source use git clone https://github.com/paladin-

t/my_basic.git first if you didn’t have a standalone interpreter yet. It

is recommended to get a latest MY-BASIC package and have a quick

blast with it first.

In this part let’s get started using the MY-BASIC command line

interpreter, which comes as below:

The close square bracket is an input prompt. Let’s begin rock it by

typing a classical ‘hello world’ tutorial as below:

https://github.com/paladin-t/my_basic/archive/master.zip

‘ Hello world tutorial

a$ = “hello ”

a$ = a$ + “world”

PRINT a$

You would get the response text after giving it a RUN command and

hinting the enter key. Any text begins with a single quote and end to

that line wouldn’t be parsed to interpretable structure because it is a

comment which won’t influence the logic; a comment does not

perform anything, it’s just a short explanation of statements. Like

other BASIC dialects, MY-BASIC is case-insensitive; it means PRINT A$

or Print a$ will perform the same behavior.

Keywords

There are thirty two keywords and twenty six reserved function

words in MY-BASIC as below:

Keywords NIL, MOD, AND, OR, NOT, LET, DIM, IF, THEN,

ELSEIF, ELSE, ENDIF, FOR, TO, STEP, NEXT, WHILE,

WEND, DO, UNTIL, EXIT, GOTO, GOSUB, RETURN,

CALL, VAR, DEF, ENDDEF, CLASS, ENDCLASS, MEM,

END

Reserved

words

ABS, SGN, SQR, FLOOR, CEIL, FIX, ROUND, RND,

SIN, COS, TAN, ASIN, ACOS, ATAN, EXP, LOG, ASC,

CHR, LEFT, LEN, MID, RIGHT, STR, VAL, PRINT,

INPUT

It is not allowed to use these words for user-defined identifier; in

addition there are two more TRUE and FALSE predefined symbols

besides these words, which represent Boolean value true and false,

you are capable of redefining these two words but it’s not

recommended. Meaning of each keyword will be mentioned latter in

this manual.

Operators

There are eleven operators in MY-BASIC as below:

Operators +, -, *, /, ^, =, <, >, <=, >=, <>

All these operators could perform in calculation or comparison.

Besides these operators, keywords MOD, AND, OR, NOT are

operators as well. An operator priority level shown in the table below

indicates execution order in an expression:

Level Operation

1 ^

2 *, /, MOD

3 +, - (minus)

4 <, >, <=, >=, <>, = (equal comparison)

5 NOT

6 AND, OR

7 - (negative)

8 = (assignment)

The priority of level 1 is the highest and level 8 is the lowest. Higher

level operations are treated before the lower ones. An expression is

processed from left to right; operations in a same level are dealt in

the same direction. Brackets ‘(’ and ‘)’ are used in pair to tell the

interpreter to process expression between them before operations

outer.

MOD means modulus; it is usually signified by percent symbol ‘%’ in

some other programming languages. The caret symbol stands for

power operation thus 2 ^ 3 results 8.

Data and operation

There are six kinds of built-in data types in MY-BASIC: Nil, Integer,

Real, Boolean, String, in addition, MY-BASIC supports user defined

data types as well, it will be explained later.

Nil is a special type which includes only one value: NIL. A NIL

represents nothing, similar to null, none, etc. in other programming

languages. Assign a variable with a Nil value will release the previous

value it holds.

Integer and Real are defined as int and float in C types which are

32bit size under most compiler architectures nowadays. And you

could redefine them as other types like long and double by modifying

a few lines of code if you wish. The only instances of Boolean are

TRUE and FALSE, and can be assigned from a Boolean expression or

an Integer expression. Actually Boolean is implemented and treated

the same way as Integer; zero means FALSE and non-zero means

TRUE.

NIL, FALSE, and 0 mean false in a Boolean expression; on the other

hand all other value including a blank String “” mean true.

MY-BASIC accepts numbers in HEX and OCT representation. A

hexadecimal number begins with a 0x prefix, and an octadic one

begins with a 0. For instance 0x10 (HEX) equals to 020 (OCT) equals

to 16 (DEC).

A variable identifier is formed with alphabet and numbers, but it

must begin with a letter. A variable does not require declaration

before using, so pay attention to spelling mistakes to avoid

unexpected behaviours. You don’t need to take care of conversion

between Integer/Float values, an Integer variable can be changed to

a Float automatically if it’s assigned with a Float value. Notice that a

String variable doesn’t need to end with a dollar character $, which

maybe a little different from some BASIC dialects. An assignment

statement consists of a beginning keyword LET and a following

assignment expression, practically the word LET is optional. See

below:

LET a = 1 ‘ Assignment statement begins with LET

pi = 3.14 ‘ Another assignment statement without LET

MY-BASIC supports array up to four dimensions by default (defined

with a macro), without doubt you can redefine the limitation. Array is

a kind of regular collection data structure in programming aspect. An

array can store a set of data that each element can be accessed via

the array name and subscript. A MY-BASIC array can hold either Real

or String data. An array must be declared by a DIM (short for

dimension) statement before using like this:

DIM nums(10)

DIM strs$(2, 5)

The naming rule for array identifiers is the same as variable naming

rule. A dimension definition field followed an array identifier begins

with an open bracket and ends with a close bracket. Dimensions are

separated by commas. Array indexes begin from zero in MY-BASIC

therefore nums(0) is the first element of array nums, note for this

difference from other BASICs, but it’s more common in most modern

programming languages. An array index could be a non-negative

Integer value formed as a constant, a variable of Integer or an

expression which evaluation results an Integer; an invalid index

would cause an out of bound error.

MY-BASIC allows you to concatenate two Strings together using

operator plus “+” and get a concatenated String. So be aware of that

each String concatenating operation would generate a new String

object with memory occupation. Comparison operators can also

apply to Strings. These operators start comparing the first character

of each String, if they are equal to each other, it continues looking at

the following ones until a difference or a terminating null-character

“\0” is reached; then return Integer values indicating the relationship

between the Strings: a zero value if both Strings are equal, a positive

value if the first is greater than the second one, a negative value if

the first is less than the second one.

Structured sub routine

It is recommended to break a program into small sub routines. Sub

routines can reduce duplicate and complicacy code. MY-BASIC

supports both structured sub routine with CALL/DEF/ENDDEF and

instructional sub routine with GOSUB/RETURN, but you cannot use

them both in one program. It’s recommended to use structured

CALL/DEF/ENDDEF to write more elegant programs.

A sub routine begins with a DEF statement and ends with ENDDEF,

you can add any numbers of parameters to a sub routine. It’s quite

similar to call a sub routine with calling a scripting interface, note you

need to write an explicit CALL statement, if you were calling a sub

routine which was defined below the calling statement. A sub routine

returns the value of the last expression to its caller, or you may use

an explicit RETURN statement. See below for example:

a = 1

b = 0

DEF FUN(d)

 d = CALL BAR(d)

 SIN(10)

 RETURN d ' Try comment this line

ENDDEF

DEF FOO(b)

 a = 2

 RETURN a + b

ENDDEF

DEF BAR(c)

 RETURN FOO(c)

ENDDEF

r = FUN(2 * 5)

PRINT r; a; b; c;

As you may see, a variable defined in a sub routine is only visible

inside the local routine scope.

Instructional sub routine

Whatever, instructional sub routine is a valid option as well. A label is

used to define the entry point of an instructional sub routine. You can

use a GOSUB statement wherever in the program to call a labeled sub

routine and transfer control to it. A RETURN statement is used to exit

a sub routine and transfer control back to its caller.

Control structures

There are three kinds of control structure in common structured

programming languages, MY-BASIC supports them as well.

Serial structure that executes statements one by one is the most

fundamental structure. MY-BASIC supports GOTO statement that

provides unconditional control transfer ability. You can execute it like

GOSUB as GOTO label, note instructional sub routine control

proprietary cannot be returned back from a callee but unconditional

GOTO cannot. Also, you cannot user both structured sub routine and

unconditional jumping in one program. An END statement can be

placed anywhere in source code to terminate the whole execution of

a program.

Conditional structure consists of some condition jump statements

(like IF, THEN, ELSEIF, ELSE, ENDIF). These statements check condition

expressions then perform an action in a case of true condition branch

and in a case of false it performs something else as specified by you.

You can write conditional IF statements in two ways. The first is

single line format which the whole conditional chunk is written in a

single line:

IF n MOD 2 THEN PRINT "Even" ELSE PRINT "Odd"

The other way is multi line statements:

INPUT n

IF n = 1 THEN

PRINT "One"

ELSEIF n = 2 THEN

PRINT "Two"

ELSEIF n = 3 THEN

PRINT "Three"

ELSE

PRINT "More than three"

ENDIF

It supports nested IF in multi line conditional statements.

Loop structure statements check a loop condition and do the loop

body in a case of true until it comes to a false case.

The FOR TO STEP NEXT loop statement is deemed as fixed step loop.

See below that prints number one to ten:

FOR i = 1 TO 10 STEP 1

PRINT i

NEXT i

The STEP segment is optional if the increment is one. The loop

variable after NEXT is optional if it is associated with the closest FOR

segment.

Sometimes, we don’t know how many steps a loop would repeat. For

this reason, variable step loops are quite essential. There are two

kinds of variable loops in MY-BASIC, WHILE WEND and DO UNTIL

loops. See the code below:

a = 1

WHILE a <= 10

PRINT a

WEND

b = 1

DO

PRINT b

UNTIL a > 10

Just as their names imply, WHILE WEND loop do the loop body while

the condition is true, and DO UNTIL loop do that until the condition is

false. A key difference is WHILE WEND checks the condition first

before executing the loop body, however, DO UNTIL checks the

condition after the loop body has been executed once.

EXIT statement in MY-BASIC is used to interrupt current loop and

continue to execute the program after it. It is the same as “break”

statement in some other programming languages.

3. Core and Standard Libraries

MY-BASIC supplies a set of frequently used function libraries which

provides some fundamental numeric and string functions. These

function names couldn’t be used as a user-defined variable identifier

either. For details of these functions, see the figure bellow:

Type Name Description

ABS Returns the absolute value of a number

SGN Returns the sign of a number

SQR Returns the arithmetic square root of a

number

FLOOR Returns the greatest integer not greater

than a number

CEIL Returns the least integer not less than a

number

FIX Returns the integer trimmed format of a

number

ROUND Returns the specified value to the nearest

integer of a number

RND Returns a random float number between

0.0 and 1.0

SIN Returns the sine of a number

COS Returns the cosine of a number

TAN Returns the tangent of a number

ASIN Returns the arcsine of a number

ACOS Returns the arccosine of a number

ATAN Returns the arctangent of a number

Numeric

EXP Returns the base-e exponential of a

number

LOG Returns the base-e logarithm of a number

ASC Returns the integer ASCII code of a

character

CHR Returns the character of an integer ASCII

code

LEFT Returns a given number of characters

from the left of a string

MID Returns a given number of characters

from a given position of a string

RIGHT Returns a given number of characters

from the right of a string

STR Returns the string type value of a number

String

VAL Returns the number type value of a string

Common LEN Returns the length of a string or an array

PRINT Outputs number or string to the standard

output stream, user redirectable

Input &

Output

INPUT Inputs number or string from the

standard input stream, user redirectable

Be aware that all those functions besides PRINT and INPUT require a

pair of brackets to surround arguments.

4. Application Programming Interface

There are a few but adequate exposed MY-BASIC APIs (Application

Programming Interface) for C, C++, Objective-C, etc. programmers.

MY-BASIC is written with pure C, what you need to do before

scripting with MY-BASIC is just copy my_basic.h and my_basic.c to

the target project, then add them to the project build configuration;

all interfaces are declared in my_basic.h. Most APIs return an int

value, they should return MB_FUNC_OK if there was no execution

error most time.

Interpreter structure

MY-BASIC uses an interpreter structure to store some necessary data

structures during parsing and running period; like local, global

function directory, global variable dictionary, abstract syntax tree

(list), parsing, running context, error information etc. An interpreter

structure is a unit of MY-BASIC environment. Invoking between MY-

BASIC script and host program also works through this structure.

Initializing and disposing

int mb_init(void);

This function must and must only be called once before any other

operations with MY-BASIC to initialize the entire system.

int mb_dispose(void);

This function must and must only be called once after operations

with MY-BASIC to dispose the entire system.

int mb_open(struct mb_interpreter_t** s);

This function opens an interpreter structure to get ready for parsing

and running.

Common usage of this function does like this:

struct mb_interpreter_t* bas = 0;

mb_open(&bas);

int mb_close(struct mb_interpreter_t** s);

This function closes an interpreter structure when it is no longer used.

mb_open and mb_close must be matched in pair sequentially.

int mb_reset(struct mb_interpreter_t** s, bool_t clrf);

This function resets an interpreter structure to initialization as it was

just opened.

Function registration/unregistration

These functions are called to register or remove extended functions.

int mb_register_func(struct mb_interpreter_t* s,

const char* n,

mb_func_t f);

This function registers a function pointer into an interpreter structure

using a given name. The function to be registered must be a pointer

of int (* mb_func_t)(struct mb_interpreter_t*, void**). A registered

function can be called in MY-BASIC script.

int mb_remove_func(struct mb_interpreter_t* s,

const char* n);

This function removes a registered function out of an interpreter

structure by a given name the same as it was registered.

int mb_remove_reserved_func(struct mb_interpreter_t* s,

const char* n);

This function removes a reserved function out of an interpreter

structure by a given name. Do not use this function unless you really

need to.

Invoking

These functions are utilities called in extended functions.

int mb_attempt_func_begin(struct mb_interpreter_t* s,

void** l);

This function checks whether script is invoking an extended function

in a legal begin format.

int mb_attempt_func_end(struct mb_interpreter_t* s,

void** l);

This function checks whether script is invoking an extended function

in a legal end format.

int mb_attempt_open_bracket(struct mb_interpreter_t* s,

void** l);

This function checks whether script is invoking an extended function

in a legal format that begins with an open bracket before arguments

list.

int mb_attempt_close_bracket(struct mb_interpreter_t* s,

void** l);

This function checks whether script is invoking an extended function

in a legal format that ends with a close bracket after arguments list.

int mb_has_arg(struct mb_interpreter_t* s,

void** l);

This function detects whether there is any more argument at current

execution position in an interpreter structure. Use this function to

implement a variable parameters interface function.

int mb_pop_int(struct mb_interpreter_t* s,

void** l,

int_t* val);

This function tries to pop an argument of int_t from an interpreter

structure.

int mb_pop_real(struct mb_interpreter_t* s,

void** l,

real_t* val);

This function tries to pop an argument of real_t from an interpreter

structure.

int mb_pop_string(struct mb_interpreter_t* s,

void** l,

char** val);

This function tries to pop an argument of char* from an interpreter

structure.

int mb_pop_usertype(struct mb_interpreter_t* s,

void** l,

void** val);

This function tries to pop an argument of void* from an interpreter

structure.

int mb_pop_value(struct mb_interpreter_t* s,

void** l,

mb_value_t* val);

This function tries to pop an argument of mb_value_t from an

interpreter structure. Use this function instead of mb_pop_int,

mb_pop_real and mb_pop_string if an extended function accepts

arguments of generics types.

int mb_push_int(struct mb_interpreter_t* s,

void** l,

int_t val);

This function pushes an argument of int_t to an interpreter structure.

int mb_push_real(struct mb_interpreter_t* s,

void** l,

real_t val);

This function pushes an argument of real_t to an interpreter

structure.

int mb_push_string(struct mb_interpreter_t* s,

void** l,

char* val);

This function pushes an argument of char* to an interpreter structure.

int mb_push_usertype(struct mb_interpreter_t* s,

void** l,

void* val);

This function pushes an argument of void* to an interpreter structure.

int mb_push_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function pushes an argument of mb_value_t to an interpreter

structure. Use this function instead of mb_push_int, mb_push_real

and mb_push_string if an extended function returns value of generics

types.

int mb_init_array(struct mb_interpreter_t* s,

void** l,

mb_data_e t,

int* d,

int c,

void** a);

This function initializes an array which MY-BASIC can use. The

parameter mb_data_e t means what’s the type of elements in the

array, you can pass MB_DT_REAL or MB_DT_STRING; you need to

disable the MB_SIMPLE_ARRAY macro to use a complex array and

pass MB_DT_NIL. The int* d and int c stand for ranks of dimensions

and dimension count. The function will put a created array to void**

a.

int mb_get_array_len(struct mb_interpreter_t* s,

void** l,

void* a,

int r,

int* i);

This function gets the length of an array. int r means which

dimension you’d like to get.

int mb_get_array_elem(struct mb_interpreter_t* s,

void** l,

void* a,

int* d,

int c,

mb_value_t* val);

This function gets the value of an element in an array.

int mb_set_array_elem(struct mb_interpreter_t* s,

void** l,

void* a,

int* d,

int c,

mb_value_t val);

This function sets the value of an element in an array.

int mb_dispose_value(mb_interpreter_t* s,

mb_value_t val);

This function disposes a value popped from an interpreter. Now used

for strings only.

Parsing and running

int mb_load_string(struct mb_interpreter_t* s,

const char* l);

This function loads a string into an interpreter structure; then parses

script source to executable structures and appends them to the

abstract syntax tree.

int mb_load_file(struct mb_interpreter_t* s,

const char* f);

This function loads a string into an interpreter structure; then parses

script source to executable structures and appends them to the

abstract syntax tree.

int mb_run(struct mb_interpreter_t* s);

This function runs a parsed abstract syntax tree in an interpreter

structure.

int mb_suspend(struct mb_interpreter_t* s,

void** l);

This function suspends and saves current execution point. Some

extended functions need this ability and resume that point after

some other operations. Call mb_run as well to resume a suspended

point.

int mb_schedule_suspend(struct mb_interpreter_t* s,

int t);

This function schedules a suspend event, and it will trigger the event

after the active statement execution is done. It’s useful to do so

when you need to do something else during the whole execution.

A). mb_schedule_suspend(s, MB_FUNC_SUSPEND); It's re-enterable

which means next mb_run will resume execution from where you

suspended. B). mb_schedule_suspend(s, MB_FUNC_END); Terminate

an execution normally, no error message. C). mb_schedule_suspend(s,

MB_EXTENDED_ABORT); Or pass an argument greater than

MB_EXTENDED_ABORT to terminate an execution and trigger an

error message. You can call mb_schedule_suspend either in

_on_stepped or in a scripting interface function. The difference

between mb_schedule_suspend and mb_suspend is that mb_suspend

can be called in a scripting interface only, and it cannot trap type B)

and C) suspension.

Debugging

int mb_debug_get(struct mb_interpreter_t* s,

const char* n,

mb_value_t* val);

This function retrieves the value of a variable using the identifier in

an interpreter structure.

int mb_debug_set(struct mb_interpreter_t* s,

const char* n,

mb_value_t val);

This function sets a variable using the identifier with a given value in

an interpreter structure.

int mb_debug_set_stepped_handler(struct mb_interpreter_t* s,

mb_debug_stepped h);

This function sets a single step handler of an interpreter structure.

The function to be set must be a pointer of void (*

mb_debug_stepped_handler_t)(struct mb_interpreter_t*, int,

unsigned short, unsigned short). This function is useful for step by

step debugging.

Error handling

mb_error_e mb_get_last_error(struct mb_interpreter_t* s);

This function returns the latest error information of an interpreter

structure.

const char* mb_get_error_desc(mb_error_e err);

This function returns the description string of error information.

int mb_set_error_handler(struct mb_interpreter_t* s,

mb_error_handler_t h);

This function sets an error callback handler of an interpreter

structure.

Stream redirection

int mb_set_printer(struct mb_interpreter_t* s,

mb_print_func_t p);

This function sets a PRINT handler of an interpreter structure. Use

this to customize an output handler for the PRINT statement. The

function to be set must be a pointer of int (* mb_print_func_t)(const

char*, …). printf is set by default.

int mb_set_inputer(struct mb_interpreter_t* s,

mb_input_func_t p);

This function sets the INPUT handler of an interpreter structure. Use

this to customize an input handler for the INPUT statement. The

function to be set must be a pointer of int (* mb_input_func_t)(char*,

int). mb_gets is set by default.

Miscellaneous

int mb_gets(char* buf,

int s);

A more safety evolvement of the standard gets.

int mb_memdup(char* val,

unsigned size);

This function duplicates a piece of memory to a MY-BASIC

manageable buffer structure; use this to generate an argument for

strings to be pushed. Note this function only copy bytes in given size,

thus you have to add an extra byte to size for ending ‘\0’.

5. Scripting with MY-BASIC

As to source code portability, the C programming language is most

outstanding, because C compilers are available on almost every

platform; that is why MY-BASIC is written in pure clean C so it can be

compiled for PC, Mac, mobile devices, game console, super

computers, MCU, smart cards, etc. with none or few porting

modifications. It would be pretty easy to bind MY-BASIC in an existing

project by just adding the MY-BASIC core which consists of a header

declaration file and corresponding C implementation file into the

target project.

First of all, you should recognize which parts in your project require

execution speed and low level control, and which parts require

flexibility and augmentability. It’s not wise to code kernel

computation-intensive modules in script; script is appropriate for

volatile parts of an entire program. There is no one fits all solution;

scripting programming languages are not omnipotent.

If it is explicit to you that using a scripting language would benefit

your project then you should make and expose some interfaces

correctly. More details on how to create your own scripting

interfaces will be dealt with in the next chapter. After that you may

complete your program with MY-BASIC script, invoking those

scripting interfaces and pack them together into a publishable

version.

Besides the scripting benefits, play with a scripting language itself is a

really enjoyable thing.

6. Customizing MY-BASIC

Redirect PRINT and INPUT

Include a header file to use variable argument list:

#include <stdarg.h>

Customizable print handler:

int my_print(const char* fmt, ...) {

 char buf[1024];

 va_list argptr;

 va_start(argptr, fmt);

 vsnprintf(buf, sizeof(buf), fmt, argptr);

 va_end(argptr);

 printf(buf); /* Change me. */

 return MB_FUNC_OK;

}

Customizable input handler:

int my_input(char* buf, int s) {

 int result = 0;

 if(fgets(buf, s, stdin) == 0) { /* Change me. */

 fprintf(stderr, "Error reading.\n");

 exit(1);

 }

 result = (int)strlen(buf);

 if(buf[result - 1] == '\n')

 buf[result - 1] = '\0';

 return result;

}

Register handlers to an interpreter:

mb_set_printer(bas, my_print);

mb_set_inputer(bas, my_input);

Now your printer and inputer would be invoked.

Write scripting APIs

MY-BASIC is a free and open source software released under the MIT

license which allows you to use, modify and extend the software for

either commercial or noncommercial uses. You might need more

scripting libraries according to your specific requirement though MY-

BASIC has already provided some functions. It is really simple in MY-

BASIC to do so.

The first step is to define the function in your host program. All

C/C++/Objective-C callee functions that will be invoked from MY-

BASIC script is a pointer of type int (* mb_func_t)(struct

mb_interpreter_t*, void**). Since an interpreter structure is used as

the first argument of an extended function, the function actually can

pop any number of arguments from the interpreter structure and

push none or one return value back into the structure. The int return

value indicates an execution status of an extended function which

always returns MB_FUNC_OK for no error. Let’s make a maximum

function that returns the maximum value of two integers as a tutorial;

see code below:

int maximum(struct mb_interpreter_t* s, void** l) {

int result = MB_FUNC_OK;

int m = 0;

int n = 0;

int r = 0;

mb_assert(s && l);

mb_check(mb_attempt_open_bracket(s, l));

mb_check(mb_pop_int(s, l, &m));

mb_check(mb_pop_int(s, l, &n));

mb_check(mb_attempt_close_bracket(s, l));

r = m > n ? m : n;

mb_check(mb_push_int(s, l, r));

return result;

}

Quite simple, isn’t it.

The second step is to register defined functions like: mb_reg_fun(bas,

maximum) (supposing we already have struct mb_interpreter_t* bas

defined).

After that you can use a registered function as any other scripting

interfaces in MY-BASIC like:

i = MAXIMUM(1, 2)

PRINT i

To perform a user defined abort, just return an integer value greater

equal than a macro MB_EXTENDED_ABORT. It is recommended to

add an abort value like:

typedef enum mb_user_abort_e {

MB_ABORT_FOO = MB_EXTENDED_ABORT + 1,

/* more… */

};

Then write return MB_ABORT_FOO; in your customized function

when something uncontainable happened.

Use usertype values

MY-BASIC building types are quite few. It’s easy to use usertype in

MY-BASIC. It can accept whatever type you give it.

MY-BASIC doesn’t care what the usertype is; it just holds a usertype

value at a variable or an array element. Note MB_SIMPLE_ARRAY

macro must be disabled when you wish to store usertype in arrayes.

There are only two essential interfaces to get or set a usertype:

mb_pop_usertype and mb_push_usertype. You can push a void* to

an interpreter and pop a value as void* as well.

Macros

Some features of MY-BASIC could be customized with macros.

MB_SIMPLE_ARRAY

Enabled by default. An entire array uses a unified type mark, which

means there are only two kinds of array: string and real_t.

Disable this macro if you would like to store generic type values in an

array including int_t, real_t, usertype. Besides, array of string is still

another kind. Note non simple array requires extra memory to store

type mark of each element.

MB_MAX_DIMENSION_COUNT

Defined as 4 by default. Change this to support arrays of bigger

maximum dimensions.

MB_ENABLE_ALLOC_STAT

Enabled by default. Use MEM to tell how much memory in bytes is

allocated by MY-BASIC. Note statistics of each allocation takes

sizeof(intptr_t) more bytes memory.

MB_ENABLE_SOURCE_TRACE

Enabled by default. MY-BASIC can tell where it goes in source code

when an error occurs.

Disable this to reduce some memory occupation. Only do this on

memory sensitive platforms.

MB_CONVERT_TO_INT_LEVEL

Describes how to deal with Real numbers after an expression is

evaluated. Just leave it a Real if it’s defined as

MB_CONVERT_TO_INT_LEVEL_NONE; otherwise try to convert it to

an Integer if it doesn’t contains decimal part if it’s defined as

MB_CONVERT_TO_INT_LEVEL_ALL. Also you could use the

mb_convert_to_int_if_posible macro to deal with an mb_value_t in

your own scripting interface functions.

MB_COMPACT_MODE

Enabled by default. C struct may use a compact layout.

This might cause some strange pointer accessing bugs with some

compilers (eg. Some MCU compilers). Try disable this if you met any

strange bugs.

_WARING_AS_ERROR

Disabled by default.

Enable this in my_basic.c to treat warnings as error, or they will be

ignored silently.

Something like divide by zero, wrong typed arguments passed will

trigger warnings.

_HT_ARRAY_SIZE_DEFAULT

Defined as 193 by default. Change this in my_basic.c to resize the

hash tables. Smaller value will reduce some memory occupation, size

of hash table will influence tokenization and parsing time during

loading, won’t influence running performance most of the time

(except cross scope identifier lookup).

_SINGLE_SYMBOL_MAX_LENGTH

Defined as 128 by default. Max length of a lexical symbol.

7. Memory Occupation

In some memory limited environments, memory occupation is often

a sensitive bottleneck. MY-BASIC provides a method to count how

much memory has an interpreter context allocated. Write script like

below to tell how much memory in bytes does MY-BASIC allocated:

PRINT MEM ‘ The keyword MEM is right for this

Note that it will take sizeof(intptr_t) bytes more of each allocation if

this statistics is enabled.

Comment the MB_ENABLE_SOURCE_TRACE macro in my_basic.h to

disable source trace to reduce some memory occupation, but you will

lose the error locating feature as well.

Redefine the _HT_ARRAY_SIZE_DEFAULT macro with a smaller value

minimum to 1 in my_basic.c to reduce memory occupied by hash

tables in MY-BASIC. Value 1 means a linear lookup.

The memory is limited in embedded systems which can run for years

and cause a severe waste of memory due to fragmentation. Besides,

it's efficient for MY-BASIC to customizing a memory allocator, even

on systems, with a plenty of memory. MY-BASIC provides an interface

that let you do so.

An allocator need to be in form of:

typedef char* (* mb_memory_allocate_func_t)(unsigned s);

And a freer:

typedef void (* mb_memory_free_func_t)(char* p);

Then you can tell MY-BASIC to use them globally instead of standard

malloc and free by:

MBAPI int mb_set_memory_manager(mb_memory_allocate_func_t a,

mb_memory_free_func_t f);

Note the functors only affect things going inside my_basic.c, but

main.c still uses the standard pair.

There is already a simple memory pool implementation in main.c.

You need to make sure the _USE_MEM_POOL macro is defined to

enable this pool, and undefine it to disable the mechanism.

There are four functions in this implementation as a tutorial:

_open_mem_pool opens the pool when setting up an interpreter;

_close_mem_pool closes the pool when terminating; a pair of

_pop_mem and _push_mem will be registered to MY-BASIC. Note

_pop_mem will call the standard malloc if an expected size is not a

common size in MY-BASIC; and it will take sizeof(union _pool_tag_t)

extra bytes to store meta data with each common size allocation.A

typical workflow may looks like below:

_open_mem_pool(); // Open it.

mb_set_memory_manager(_pop_mem, _push_mem); // Register

them.

{

 mb_init();

 mb_open(&bas);

 // Other deals with MY-BASIC.

 mb_close(&bas);

 mb_dispose();

}

_close_mem_pool(); // Finished.

Strictly speaking, the tutorial pool doesn't guarantee to allocate

continuous address memory, it is an object pool other than a

memory pool, which pops a free chunk of memory with an expected

size to user, and pushes it to the stack back when user frees it instead

of freeing it to system. This could be a good start if you would like to

implement your own memory pool algorithm optimized for a specific

system.

8. Using MY-BASIC as a Standalone Interpreter

You would be familiar with the MY-BASIC interpreter if you have tried

the hello world tutorial. There are some useful commands in

interactive interpreter mode:

Command Summary Usage

HELP Shows help information.

CLS Clears screen.

NEW Clears current program.

RUN Runs current program.

BYE Quits interpreter.

LIST Lists current program. LIST [l [n]], l is start line

number, n is line count.

EDIT Edits

(modify/insert/remove)

a line in current

program.

EDIT n, n is line number.

EDIT -I n, insert a line

before a given line, n is

line number.

EDIT -R n, remove a line, n

is line number.

LOAD Loads a file as current

program.

LOAD *.*.

SAVE Saves current program

to a file.

SAVE *.*.

KILL Deletes a file. KILL *.*.

Type a command (maybe also with several arguments) and hint enter

to execute it. Command is only an aspect of the interpreter other

than keyword, that is to say it is valid to use them as variable

identifiers in a program; but to avoid reading confusion and conflict,

and anyway, you may consider different identifier naming.

Pass a file path to the binary to load and run that script file in file

execution mode.

Pass an argument –e and an expression to evaluate and print it, eg. –

e “2 * (3 + 4)”, note the double quotation marks are required when

an expression contains space characters.

9. Extra Information

Document version

Version: 1.1.5 Sep. 2015

Author: Wang Renxin

License: the MIT license

First edited date: Mar. 8, 2011

Last edited date: Sep. 21, 2015

